Extensions 1→N→G→Q→1 with N=C22xS3 and Q=C20

Direct product G=NxQ with N=C22xS3 and Q=C20
dρLabelID
S3xC22xC20240S3xC2^2xC20480,1151

Semidirect products G=N:Q with N=C22xS3 and Q=C20
extensionφ:Q→Out NdρLabelID
(C22xS3):C20 = C5xC23.6D6φ: C20/C5C4 ⊆ Out C22xS31204(C2^2xS3):C20480,125
(C22xS3):2C20 = C5xS3xC22:C4φ: C20/C10C2 ⊆ Out C22xS3120(C2^2xS3):2C20480,759
(C22xS3):3C20 = C10xD6:C4φ: C20/C10C2 ⊆ Out C22xS3240(C2^2xS3):3C20480,806

Non-split extensions G=N.Q with N=C22xS3 and Q=C20
extensionφ:Q→Out NdρLabelID
(C22xS3).C20 = C5xC12.46D4φ: C20/C5C4 ⊆ Out C22xS31204(C2^2xS3).C20480,142
(C22xS3).2C20 = C5xD6:C8φ: C20/C10C2 ⊆ Out C22xS3240(C2^2xS3).2C20480,139
(C22xS3).3C20 = C10xC8:S3φ: C20/C10C2 ⊆ Out C22xS3240(C2^2xS3).3C20480,779
(C22xS3).4C20 = C5xS3xM4(2)φ: C20/C10C2 ⊆ Out C22xS31204(C2^2xS3).4C20480,785
(C22xS3).5C20 = S3xC2xC40φ: trivial image240(C2^2xS3).5C20480,778

׿
x
:
Z
F
o
wr
Q
<